科研動態(tài)

首頁 > 科學(xué)研究 > 科研動態(tài) > 正文

時滿星博士在SCI期刊《PLOS One》發(fā)表論文

時間:2025-10-13 15:24:55 來源:科研與研究生管理辦公室 作者:崔向超 閱讀:

標(biāo)題:A lightning cluster identification method considering multi-scale spatiotemporal neighborhood relationships

作者:Manxing Shi, Peng Fan, Hantao Tao, Qin Li, Ju Wang, Yujun Liu, Lai Wei

來源出版物:PLOS One

DOI10.1371/journal.pone.0333207

出版年:2025

文獻(xiàn)類型:Journal

語種:英文

摘要:Rapid and accurate identification and tracking of lightning clusters from massive lightning detection data are crucial for real-time thunderstorm nowcasting and clima tological analyses of thunderstorm activity. Although density-based clustering algo rithms can identify clusters of arbitrary shapes at fine scales, their performance is often hindered by large data volumes and significant variations in lightning density. To address these challenges, we propose a multi-scale spatiotemporal lightning cluster ing framework, termed CC3D-CSCAP. It consists of two main components. First, the 3-D connected component algorithm (CC3D) performs coarse-scale segmentation by dividing the lightning dataset into spatiotemporally disconnected subsets using 26-connectivity. Then, the cylinder-based scan clustering algorithm with adaptive parameters (CSCAP) is applied to each subset for fine-scale identification of light ning clusters. Since the lightning subset may still contain multiple thunderstorms with varying lightning densities, CSCAP adaptively determines clustering parameters based on the statistical characteristics (time difference and spatial distance) of sub set. Compared with fixed-parameter methods, CC3D-CSCAP identifies more clusters (771,033) while retaining a high percentage of usable lightning strokes (98.988%). The clustering results align well with the theoretical criteria for optimal clustering and are promising for global applications in lightning data analysis, nowcasting, and climatological studies of convective systems.

關(guān)鍵詞:School of Geographic Sciences, Xinyang Normal University, Xinyang, China, School of New Energy and Electrical Engineering, Hubei University, Wuhan, China, China Electric Power Research Institute, Wuhan, China, Spatial Information Technology Application Department, Changjiang River Scientific Research Institute, Wuhan, China

影響因子:2.6

論文鏈接:https://doi.org/10.1371/journal.pone.0333207

(地理科學(xué)學(xué)院 劉媛心 崔向超/初審 閆軍輝/復(fù)審 韓勇/終審)


編輯:姚玉坤
墨脱县| 分宜县| 永新县| 淮安市| 黄陵县| 静海县| 湟源县| 涪陵区| 镇坪县| 江城| 毕节市| 中超| 台中市| 阿拉善左旗| 大兴区| 巨鹿县| 巧家县| 津市市| 通州市| 沈丘县| 商丘市| 历史| 蓬溪县| 石屏县| 油尖旺区| 江安县| 定襄县| 台北县| 文登市| 霍州市| 新河县| 克东县| 加查县| 龙口市| 邢台市| 吉隆县| 新巴尔虎右旗| 枣庄市| 和顺县| 赞皇县| 蓬溪县|